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Abstract— We present new insights into how to achieve
higher frequencies in large-scale nonlinear predictive control
using truncated-like schemes. The basic idea is that, instead
of solving the full nonlinear programming (NLP) problem at
each sampling time, we solve a single, truncated quadratic
programming (QP) problem. We present conditions guaran-
teeing stability of the approximation error derived through
this type of scheme using generalized equation concepts. In
addition, we propose a preliminary scheme using an augmented
Lagrangian reformulation of the NLP and projected successive
over relaxation to solve the underlying QP. This strategy enables
early termination of the QP solution because it can perform
linear algebra and active-set identification tasks simultaneously.
A simple numerical case study is used to illustrate the devel-
opments.

I. PROBLEM STATEMENT

Consider a nonlinear predictive control (NMPC) problem
of the form

min
u(τ)

∫ t+T

t

ψ (z(τ), u(τ)) dτ (1a)

s.t. ż(τ) = φ(z(τ), u(τ)), τ ∈ [t, t+ T ] (1b)
z(τ) ≥ 0, u(τ) ≥ 0, τ ∈ [t, t+ T ] (1c)
z(t) = z̄(t), (1d)

where t is the time dimension, T is the prediction horizon,
u(·) ∈ <nu are the control trajectories, and z(·) ∈ <nx are
the model state trajectories. The nonlinear mapping φ(·, ·) :
<nz×nu → <nz is the model, and ψ(·, ·) : <nz×nu → < is
the cost. This problem is parametric in the system states z̄(·)
which we assume evolve according to the dynamics

˙̄z(t) = φ(z̄(t), u(t)) + w(t), (2)

where w(·) is a disturbance process reflecting unmodelled
dynamics or noise. In an ideal scenario, we seek to solve
the NMPC problem in real-time in order to reject the
disturbances. A fundamental challenge is that, if the NMPC
problem is not solved at a frequency consistent with the
system dynamics, the disturbances will accumulate over time
and compromise the system stability. In many applications
achieving the desired frequencies is not possible due to the
computational complexity of the NMPC problem.

Currently, the NMPC problem is typically solved by
casting this as a nonlinear programming (NLP) problem.
Here, we consider a parametric NLP of the form

min f(x, t), s.t. c(x, t) = 0, x ≥ 0, (3)
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where x ∈ <n are the decision variables that include
discretized controls and states and, with some abuse of
notation, t ∈ < will be used to represent the time-evolving
data (e.g., system states). A solution of this problem satisfies
the parametric Karush-Kuhn-Tucker (KKT) system:

xT∇xL(w, t) ≥ 0, c(x, t) = 0, x ≥ 0. (4)

This is a nonlinear complementarity system. The Lagrange
function is defined as

L(w, t) = f(x, t) + λT c(x, t), (5)

where λ ∈ <m are Lagrange multipliers and wT = [xT , λT ].
We denote the solution of this problem as w∗(t). Under
certain regularity conditions, this solution forms a continuous
but non-smooth manifold [6]. Non-smoothness arises as a
result of variables hitting and moving away from the bounds
at subsequent times (active-set changes).

In an effort to achieve higher frequencies, several studies
[3], [8], [10] have proposed to solve a single quadratic
programming (QP) problem per sampling time. The QP
derived from (3) has the form

min
∆x≥−x̄tk

∇xf(x̄tk , tk+1)T∆x+
1

2
∆xTH(w̄tk , tk)∆x

(6a)
s.t. c(x̄tk , tk+1) + J(x̄tk , tk)∆x = 0, (6b)

where H = ∇xxL is the Hessian of the Lagrange function
and J = ∇xc is the Jacobian of the equality constraints.
The basic idea is to linearize the KKT conditions at the
current point w̄tk , perturb the data tk+1 = tk + ∆t, solve
the QP to obtain ∆wtk , and obtain wtk+1

= w̄tk + ∆w.
The hope is that w̄tk provides a good approximation to
w∗(tk) and that it converges as k → ∞. An interesting
observation arising in NMPC is that the sampling time can
be reduced as we decrease the solution time. In the limit,
we can expect that ‖w̄t − w∗t ‖ → 0, ∀t as ∆t → 0.
The traditional approach of converging the NLP to a high
degree of accuracy considerably limits the attainable ∆t.
Therefore, it seems preferable to obtain a fast and sufficiently
accurate solution in order to reject disturbances and to keep
neighboring problems close to each other. Notice, however,
that the minimum achievable sampling time ∆t is restricted
by the solution time of the QP itself. Consequently, some
questions arise: For finite δt, is it possible to guarantee that
the error ‖w̄tk − w∗tk‖ remains stable? Can we guarantee
‖w̄tk−w∗tk‖ → 0 as k →∞? How can we accelerate the QP
solution to reduce ∆t? In this work, we address stability by
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using generalized equation concepts (Section II). In addition,
we propose a scheme to terminate the QP solution early
and still guarantee stability of the error (Section IV). We
illustrate these developments using a simple numerical case
study (Section V).

II. GENERALIZED EQUATIONS

The key observation driving our analysis is the fact that
the complementarity system (4) can be posed as a parametric
generalized equation (GE) of the following form: For a given
t ∈ T ⊆ <, find w ∈W ⊆ <n such that

0 ∈ F (w, t) +NK(w). (7)

Here, F : W × T → Z is a continuously differentiable
mapping in both arguments with

F (w, t) =

[
∇xL(w, t)
c(x, t)

]
, (8)

and K = <n+ × <m ⊆ W is a polyhedral convex set and
<n+ is the non-negativity orthant. We define the derivative
mapping Fw(w, t) := ∇wF (w, t) and assume that it is
Lipschitz in both arguments with constant LFw , ∀w ∈W, t ∈
T . The multifunction NK : W → 2Z is the normal cone
operator

NK(w) =

{
{ν ∈W | (w − y)T ν ≥ 0, ∀ y ∈ K} if w ∈ K

∅ if w 6∈ K.

Our goal is to create a discrete-time scheme w̄tk providing
a fast but stable approximation of the solution of (7) w∗tk .
To achieve this, we will perform a single truncated Newton
iteration for the generalized equation per time step.

A. The Nonlinear Equation Case

A good intuition as to why a truncated scheme is suffi-
cient to track the solution manifold can be easily explained
by considering the case without inequality constraints or,
equivalently, when K = <n and F (w, t) = 0. In this
case, standard calculus results can be used to establish error
bounds. This approach has been followed in [3], [10]. In this
section, we perform an informal analysis in order to motivate
the results of later sections. In the absence of inequality
constraints, the approximate scheme w̄tk , k > 0, can be
obtained from the recursive solution of the truncated linear
Newton system:

rε = F (w̄tk , tk+1) + Fw(w̄tk , tk)(w̄tk+1
− w̄tk) (9)

where rε is the solution residual satisfying ‖rε‖ ≤ κε > 0.
We assume by now that the linearization point w̄tk satisfies
‖w̄tk − w∗tk‖ ≤ κr where F (w∗tk , tk) = 0. In addition, we
assume that the solution manifold is Lipschitz continuous
(see Theorem 1) such that ‖w∗tk+1

− w∗tk‖ ≤ Lw∆t with
∆t = tk+1 − tk and κr, Lw > 0. We need to establish
conditions leading to stability of the approximation error in
the sense that

‖w̄tk − w∗tk‖ ≤ κr ⇒ ‖w̄tk+1
− w∗tk+1

‖ ≤ κr.

From the mean value theorem we have that

0 = F (w∗tk+1
, tk+1)

= F (w∗tk , tk+1)

+

∫ 1

0

Fw

(
w∗tk + χ(w∗tk+1

− w∗tk), tk+1

)
(w∗tk+1

− w∗tk)dχ

(10)

and

F (w∗tk , tk+1) = F (w̄tk , tk+1)

+

∫ 1

0

Fw
(
w̄tk + χ(w∗tk − w̄tk), tk+1

)
(w∗tk − w̄tk)dχ.

(11)

Plugging (9) in (11), we get

F (w∗tk , tk+1) = rε − Fw(w̄tk , tk)(w̄tk+1
− w̄tk)

+

∫ 1

0

Fw
(
w̄tk + χ(w∗tk − w̄tk), tk+1

)
(w∗tk − w̄tk)dχ.

(12)

From (12) and (10) and bounding we can obtain,

‖w̄tk+1
− w∗tk+1

‖ ≤ κψκε

+ κψLFw
Lw∆t

(
κr +

1

2
Lw∆t+ ∆t

)
+ κψLFw

κr

(
1

2
κr + ∆t

)
,

where κψ = 1
‖Fw(w̄tk

,tk)‖ . For stability we require ‖w̄tk+1
−

w∗tk+1
‖ ≤ κr. This implies

κr ≥κψκε + κψLFw
Lw∆t

(
κr +

1

2
Lw∆t+ ∆t

)
+ κψLFwκr

(
1

2
κr + ∆t

)
.

Rearranging, we have(
1− 1

2
LFw

κψκr

)
κr ≥ κψκε + κψLFw

(Lw + 1)∆t κr

+ LFw
κψLw

(
1

2
Lw + 1

)
∆t2.

Stability follows if
(
1− 1

2LFw
κψκr

)
> 0 and if there exist

κ ≥ 0 and ∆t satisfying

αNLE1 ∆t κr ≤ κ∆t2 (13a)

αNLE2 ∆t2 + κψκε ≤ αNLE3 κr, (13b)

where αNLE1 , αNLE2 , and αNLE3 are defined in the appendix
of [14]. At every time tk, w̄tk+1

is obtained by solving (21).
This is an approximation of w∗tk+1

. The stability conditions
guarantee that if κr, κε = O(∆t2), then the approximation
error remains O(∆t2) for all k > 0. We have thus created
an algorithm that tracks the solution manifold of F (w, t) =
0 stably by solving (within κε) a single truncated Newton
step per sampling time. This allows us to use iterative linear
algebra schemes that can be terminated early.



In practice, one can still apply the above results to handle
inequality constraints (bounds) by introducing smoothing
schemes, as suggested in [10], [4], [13]. However, this leads
to numerical instability. Note also that, in the presence
introducing bounds, we can no longer invert algebraically
the Newton system. In addition, non-smoothness prevents
the direct application of standard calculus results. We resolve
these technical difficulties in the following sections.

B. Linearized Generalized Equations

An important consequence of the structure of (7) is that it
allows us to analyze the smooth and nonsmooth components
independently. We start by defining the linearized generalized
equation (LGE) at a given solution w∗t0 ,

r ∈ F (w∗t0 , t0) + Fw(w∗t0 , t0)(w − w∗t0) +NK(w). (14)

If K = <n+, solving this LGE is equivalent to solving the
perturbed linear complementarity problem,

w ≥ 0, ν = F (w∗t0 , t0)+Fw(w∗t0 , t0)∆w−r ≥ 0, wT ν = 0.
(15)

If Fw is a symmetric matrix, then condition (15) are the
optimality conditions of the QP problem,

min∆w≥−w∗
t0

1

2
∆wTFw(w∗t0 , t0)∆w +F (w∗t0 , t0)T∆w − rT∆w.

(16)

We can rewrite (7) at any point (w, t) in the neighborhood
of w∗t0 in terms of (14) by defining the residual,

r(w, t) = F (w∗t0 , t0) + Fw(w∗t0 , t0)(w − w∗t0)− F (w, t). (17)

This gives, for any point satisfying (7),

r(w, t) ∈ F (w∗t0 , t0) + Fw(w∗t0 , t0)(w − w∗t0) +NK(w). (18)

This formulation will allow us to bound the distance between
(w∗t0 , t0) and neighboring points (w, t) in terms of r(w, t).

Central to this study is the inverse operator ψ−1 : Z →W
of the perturbed LGE (18), which we define as

w ∈ ψ−1[r]

⇔ r ∈ F (w∗t0 , t0) + Fw(w∗t0 , t0)(w − w∗t0) +NK(w).
(19)

In other words, the operator is a multifunction from the space
of the residual (perturbation) of the LGE to the space of the
solution. Some basic properties arising from the definition
of the inverse operator are as follows:

w∗t0∈ψ
−1[r(w∗t0 , t0)] = ψ−1[0], w∗t∈ψ−1[r(w∗t , t)].

Definition 1: (Strong Regularity [12]). The GE (7) is said
to be strongly regular at w∗t0 in the sense of Robinson if there
exists a neighborhood VW ⊆W of w∗t0 and a neighborhood
VZ ⊆ Z of r(w∗t0 , t0) = 0, such that for every r ∈ VZ , (18)
has a unique solution w = ψ−1[r] ∈ VW , and the inverse
mapping ψ−1 : VZ → VW is Lipschitz with constant Lψ .
That is, for any r1, r2 ∈ VZ ,

‖ψ−1[r1]− ψ−1[r2]‖ ≤ Lψ‖r1 − r2‖.

This result is a generalization of the implicit function theo-
rem for nonlinear equations. In other words, strong regularity
guarantees the invertibility of the solution mapping. In Theo-
rem 4.1 in [12] and Theorem 6 in [5]) it has been established
that the so-called strong second-order conditions and the
linear independence constraint qualification are sufficient to
guarantee strong regularity of the NLP.

III. STABILITY OF APPROXIMATION ERROR

Using this basic set of tools, we now establish results that
will allow us to construct algorithms for tracking the solution
manifold of (7) approximately.

Theorem 1: (Theorem 2.3 in [12] and Theorem 3.3.4 in
[6]) Assume (7) is strongly regular at w∗t0 . Then, there
exist neighborhoods VW and VT and a unique and Lipschitz
continuous solution w∗t ∈ VW of the GE (7) that satisfies,
for each t = t0 + ∆t ∈ VT ,

(i) ‖w∗t − w∗t0‖ ≤ Lw∆t (20)

with Lw > 0. In addition, consider that w̄t solves the
truncated system

δε ∈ F (w∗t0 , t) + Fw(w∗t0 , t0)(w̄t − w∗t0) +NK(w̄t), (21)

where rε is the solution residual satisfying ‖rε‖ ≤ δε > 0.
We have that w̄t satisfies

(ii) ‖w∗t − w̄t‖ ≤ Lψ (δε + γ(∆t)∆t) ,

with γ(∆t) → 0 as ∆t → 0; and, if Fw is Lipschitz
continuous, then

(iii) ‖w∗t − w̄t‖ ≤ Lψ
(
δε + κ∆t2

)
with κ > 0.

Having a reference solution w∗t0 , we can compute the
approximate solution w̄t by solving the LCP (15) or the QP
(16) with r = F (w∗t0 , t0) − F (w∗t0 , t). From Theorem 1,
we see that this approximation can be expected to be close
to the optimal solution w∗t . In our approximate algorithm,
however, we relax the requirement that w∗t0 be available.
Instead, we consider a linearization point w̄t0 located in the
neighborhood of w∗t0 . In addition, we assume that the LCP
is not solved exactly. In other words, w̄t is the solution of
the truncated system

rε ∈ F (w̄t0 , t) + Fw(w̄t0 , t0)(w − w̄t0) +NK(w), (22)

where rε ∈ <n is the solution residual. This system can be
posed in form (18) by using the following definition

r = rε + F (w∗t0 , t0) + Fw(w∗t0 , t0)(w − w∗t0)

− F (w̄t0 , t)− Fw(w̄t0 , t0)(w − w̄t0). (23)

Note that, in this case, the perturbation r is an implicit
function of the solution w = w̄t. In addition, we emphasize
that (23) is used only as an analytical tool. In practice,
however, (22) is solved.

Theorem 2: (Stability of Approximation Error). Assume
(7) is strongly regular at w∗t0 . Define w̄t as the solution of the



perturbed LGE (22) where w̄t0 is a point in the neighborhood
VW of w∗t0 . The associated residual r(w̄t0 , t0) is assumed to
satisfy

‖r(w̄t0 , t0)− r(w∗t0 , t0)‖ ≤ δr,

with δr > 0. Assume there exists δε > 0 such that ‖rε‖ ≤ δε.
If there exists κ > 0 and if ∆t satisfies

αGE1 ∆t δr ≤ κ∆t2 (24a)

(αGE2 + κ)∆t2 + δε ≤ αGE3 δr, (24b)

with αGE1 , αGE2 and αGE3 defined in the Appendix of [14];
then the approximation error remains stable:

‖w̄t0 − w∗t0‖ ≤ Lψδr ⇒ ‖w̄t − w∗t ‖ ≤ Lψδr.
Proof. See [14] �

Corollary 3: Assume conditions of Theorem 2 hold
∀ tk ∈ [t0, tf ]. Then,

‖w̄tk − w∗tk‖ ≤ Lψδr, tk+1 = tk + k ·∆t, ∀ k ≤ tf − t0
∆t

.

Condition (24a) can be satisfied for δr = o(∆t), O(∆t2).
Condition (24b) is stricter. If δr = o(∆t), this condition
states that the solution error should be at least δε = o(∆t).
Note that a small Lψ is beneficial because it relaxes both
(24a) and (24b). The proposed scheme is equivalent to
time-stepping methods used to solve differential variational
inequalities (DVI) [11]. Finally, note that the above stability
results can be applied directly to the NLP context since
optimality conditions of QP (6) formulate an LGE of the
form (22).

IV. AUGMENTED LAGRANGIAN STRATEGY

As we have seen, solving a single QP (6) at each time
step is sufficient. However, it is crucial to have a fast solution
strategy for the QP. Here, we propose to reformulate the NLP
using an augmented Lagrangian (AL) function and solve the
underlying QP using a projected successive over-relaxation
(PSOR) strategy. To derive our strategy, we define the AL
function,

LA(x, λ̄, t, ρ) = f(x, t) + λ̄T c(x, t) +
ρ

2
‖c(x, t)‖2. (25)

A strategy to solve the original NLP (3) consists of comput-
ing solutions of the AL subproblem

min
x≥0

LA(x, λ̄, t, ρ) (26)

for a sequence of increasing ρ. Note that the multipliers λ̄
act as parameters of the AL subproblem. The solution of the
subproblem is defined as x∗(λ̄, t). The multipliers can be
updated externally as

λ̄← λ̄+ ρ c(x∗(λ̄, t), t). (27)

We thus define the solution pair x∗(λ̄, t), Λ∗(λ̄, t) = λ̄ +
ρ c(x∗(λ̄, t), t). The first-order conditions of (26) can be
posed as a GE of the form

0 ∈ ∇xLA(x, λ̄, t) +N<n
+

(x), (28)

where

∇xLA(x, λ̄, t) = ∇xf(x, t) + (λ̄+ ρ c(x, t))T∇xc(x, t).

The linearized version of (28) defined at the NLP solution
x∗t0 , λ̄ = λ∗t0 is given by

r ∈ ∇xLA(x∗t0 , λ
∗
t0 , t0)

+∇xxLA(x∗t0 , λ
∗
t0 , t0)(x− x∗t0) +N<n

+
(x) (29)

for r = 0. To establish perturbation results for the AL LGE
in connection with those of the original NLP (3), we consider
the following equivalent formulation of (28), proposed in [1]:

0 ∈ F (w, p(λ̄), t) +N<n
+×<m(w), (30)

where

F (w, p(λ̄), t) =

[
∇xf(x, t) + ΛT∇xc(x, t)
c(x, t) + p(λ̄) + 1

ρ (λ∗t0 − Λ)

]
, (31)

wT = [xT ΛT ], and

p(λ̄) =
1

ρ
(λ̄− λ∗t0). (32)

For t = t0 and λ̄ = λ∗t0 , we have p(λ̄) = 0, x∗(p(λ̄), t) =
x∗t0 , and Λ∗(p(λ̄), t) = λ∗t0 . The solution of GE (30) is
denoted as w∗(p(λ̄), t). The linearized version of (30) at w∗t0
is

r ∈ F (w∗t0 , 0, t0) +Fw(w∗t0 , 0, t0)(w−w∗t0) +N<n
+×<m(w),

(33)
where

Fw(w∗t0 , 0, t0) =

[
∇xxL(w∗t0 , t0) ∇xc(x∗t0 , t0)
∇Tx c(x∗t0 , t0) − 1

ρ Im

]
.

(34)

We emphasize that the reformulation (30) is considered only
for theoretical purposes. In practice, (28) is solved. We now
establish the following approximation results in the context
of the AL framework.

Lemma 4: Assume (28) is strongly regular at w∗t0 . Then,
there exist neighborhoods VW ,VT , and Vp where the solution
of the AL subproblem (26) satisfies, for each t = t0 + ∆t ∈
VT , p(λ̄) ∈ Vp,

(i) ‖w∗(λ̄, t)− w∗t0‖ ≤
Lw
ρ
‖λ̄− λ∗t0‖+ Lw∆t. (35)

Furthermore, consider the approximate solution x̄(λ̄, t) ob-
tained from the perturbed LGE (29) with

r = ∇xLA(x∗t0 , λ
∗
t0 , t0)−∇xLA(x∗t0 , λ̄, t), (36)

and associated multiplier Λ̄(λ̄, t) = λ̄ + ρ c(x̄(λ̄, t), t). The
pair, denoted by w̄(λ̄, t), satisfies

(ii) ‖w̄(λ̄, t)− w∗(λ̄, t)‖ = O

((
∆t+

1

ρ
‖λ̄− λ∗t0‖

)2
)
.

(37)
Proof. The result follows from the equivalence between (28)
and (30), by recalling that p(λ∗t0) = 0, p(λ̄) = 1

ρ‖λ̄− λ
∗
t0‖,

and by applying Theorem 1. �



This result states that the solution of a perturbed AL
LGE formed at w∗t0 provides a second-order approximation
of the subproblem solution w∗(λ̄, t). The impact of the
multiplier error can be made arbitrarily small by fixing ρ
to a sufficiently large value.

Theorem 5: (Stability of Approximation Error for Aug-
mented Lagrangian). Assume w∗t0 is a strongly regular solu-
tion of (29). Define x̄(λ̄, t) as the solution of the LGE,

rε ∈∇xLA(x̄t0 , λ̄, t)

+∇xxLA(x̄t0 , λ̄, t0)(x− x̄t0) +N<n
+

(x), (38)

with an associated multiplier update Λ̄(λ̄, t) = λ̄ +
ρ c(x̄(λ̄, t), t). The pair is denoted by w̄(λ̄, t). The reference
linearization point w̄Tt0 = [x̄Tt0 , Λ̄

T
t0 ] with Λ̄t0 = λ̄ +

ρ c(x̄t0 , t0) is assumed to exist in the neighborhood VW of
w∗t0 . The associated residual r(w̄t0 , t0) is assumed to satisfy
‖r(w̄t0 , t0) − r(w∗t0 , t0)‖ ≤ δr with δr > 0. Furthermore,
assume there exists δε > 0 such that ‖rε‖ ≤ δε. If there
exists κ > 0, ∆t and ρ satisfying

αAL1 ∆tδr +
Lw
ρ

(
δr +

Lw
Lψ

∆t

)
≤ κ

(
∆t+

Lψδr
ρ

)2

(39a)

αAL2

(
∆t+

Lψδr
ρ

)2

+ δε ≤ αAL3 δr, (39b)

where αAL1 , αAL2 , αAL3 are defined in the appendix in [14],
then the approximation error remains stable:

‖w̄t0 − w∗t0‖ ≤ Lψδr ⇒ ‖w̄(λ̄, t)− w∗t ‖ ≤ Lψδr.
Proof. See [14]. �

The recursive stability result of Corollary 3 also applies
in this context. Note that if ρ → ∞, conditions (39a)-(39b)
reduce to (24a)-(24b). Therefore, similar order results to
those of Theorem 2 can be expected for sufficiently large
ρ. Note also that the initial multiplier error (bounded by δr)
always appears divided by ρ. This indicates that relatively
large initial multiplier errors can be tolerated by increasing
ρ. Nevertheless, note that the second term on the left-hand
side of (39a) remains o(∆t) even if δr = O(∆t2). In other
words, this condition is more restrictive than (24a).

To solve the QP associated to the LGE (38), we follow a
PSOR approach. The QP has the form,

min
z≥α

1

2
zTMz + bT z. (40)

Any solution of this QP solves the LCP,

Mz+b ≥ 0, z−α ≥ 0, (z−α)T (Mz+b) = 0. (41)

Consider the following PSOR algorithm adapted from [7],
[9]:
PSOR Algorithm
Given z0 ≥ α, compute for k = 0, 1, ..., niter,

zk+1
i = (1− ω)zki −

ω

Mii

∑
j<i

Mijz
k+1
j +

∑
j>i

Mijz
k
j − bi


zk+1
i = max

(
zk+1
i , αi

)
, i = 1, ..., n, (42)

where ω ∈ (0, 2) is the relaxation factor.
Theorem 6: (Theorem 2.1 in [9]). Let M be symmetric

positive definite. Then, each accumulation point of the se-
quence {zk} generated by (42) converges to a solution of
the LCP (15). The rate of convergence is R-linear.

It is known that, for the SOR method for linear systems,
in order to reduce the error by a factor of 1/10, SOR with
non optimal parameter ω requires O(n) iterations [7]. Here,
n = dim(z). We can now establish our algorithm, which we
refer to as AugLag.

AugLag Algorithm
Given x̄t0 , λ̄t0 , ∆t, ρ, niter,

1) Evaluate ∇xLA(x̄tk , λ̄tk , tk+1, ρ) and
∇xxLA(x̄tk , λ̄tk , tk, ρ).

2) Compute step ∆x̄tk+1
by applying niter PSOR itera-

tions to (40) with:

M = ∇xxLA(x̄tk , λ̄tk , tk, ρ),

b = ∇xLA(x̄tk , λ̄tk , tk+1, ρ)

3) Update primal variables x̄tk+1
= x̄tk + ∆x̄tk+1

and
multipliers λ̄tk+1

= λ̄tk + ρ c(x̄tk+1
, tk+1).

4) Set k ← k + 1.

The proposed AugLag strategy is attractive because it
performs linear algebra and active-set identification tasks
simultaneously, it can exploit warm-start information, and
it has a favorable computational complexity.

V. NUMERICAL EXAMPLE

To illustrate the developments, we consider the model
predictive control of a nonlinear CSTR. The optimal control
formulation is given by

min
u(τ)

∫ t+T

t

(
wT (zT − zspT )2 + wC(zC − zspC )2

+wu(u− usp)2
)
dτ

s.t.
dzC
dτ

=
zC − 1

θ
+ k0 · zC · exp

[
−Ea
zT

]
, zC(0) = z̃C(t)

dzT
dτ

=
zT − zfT

θ
− k0 · zC · exp

[
−Ea
zT

]
+ α · u · (zT − zcwT ), zT (0) = z̃T (t)

zminC ≤ zC ≤ zmaxC , zminT ≤ zT ≤ zmaxT

umin ≤ u ≤ umax.

The system involves two states z(τ) = [zC(τ), zT (τ)] and
one control u(τ). The set-points are denoted by the super-
script sp. For implementation, the optimal control problem
is converted into an NLP by applying an implicit Euler
discretization scheme with grid size ∆τ = 0.25. The NLP
is parametric in the initial conditions, which are implicit
functions of t. The initial conditions are denoted by z̃T (t)
and z̃C(t). To apply the AugLag algorithm, we set the AL
penalty parameter ρ = 100 and fix the number of PSOR
iterations to 25. We initialize the algorithm by perturbing an
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initial solution w∗t0 as w̄t0 ← w∗t0 · δw where δw > 0 is a
perturbation. This generates the initial residual r(w̄t0 , t0) .
An additional perturbation, in the form of a set-point change,
is introduced at tk = 50. In Figure 1, we present the norm
of the residuals along the simulation horizon with increasing
∆t. Note that although the initial residual is large O(103),
the subsequent residuals remain stable and tend to decrease.
The set-point change generates a residual that is only O(100)
and can be tolerated with no problem. The PSOR residuals rε
at the beginning of the horizon are O(10−1) and converge to
O(10−6) when the system reaches the set-points. In Figure
2, we present control and temperature profiles for ∆t = 0.25
and ∆t = 0.01. The approximation error decreases with the
step size. The PSOR strategy identifies efficienctly active-
set changes in subsequent steps. At a single step, up to 100
changes were observed. For the larger step size, note that
even if the active-sets do not match, the residuals remain
bounded and the system eventually converges to the optimal
trajectories.

VI. CONCLUSIONS AND FUTURE WORK

We have presented new insights into enabling the imple-
mentation of NMPC at higher frequencies. The main idea is
to solve a single, truncated quadratic programming problem
per time step. We establish conditions guaranteeing that the
approximation error remains stable even in the presence of

active-set changes. In addition, we present truncated scheme
that enables early termination and that performs linear alge-
bra and active-set identification tasks simultaneously. As part
of future work, we are exploring other algorithms with even
cheaper steps. In addition, we seek to establish convergence
results of approximate schemes.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of
Energy through contract DE-AC02-06CH11357. We thank
the reviewers for their questions and suggestions. These were
valuable in improving the quality of the manuscript.

REFERENCES

[1] D. .Bertsekas. Constrained Optimization and Lagrange Multiplier
Methods. Academic Press, 1982.

[2] F. Bonnans and A. Shapiro. Perturbation Analysis of Optimization
Problems. Springer-Verlag, 2000.

[3] M. Diehl, H.G. Bock, and J.P. Schlöder. A real-time iteration scheme
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